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a b s t r a c t 

This study focuses on the development of a theoretical framework and corresponding algorithms to estab- 

lish spatio-temporal surrogate models for multiphase flow processes using Gaussian process (GP) based 

machine learning technique trained by direct numerical simulation (DNS) data. The training (and testing) 

datasets are obtained by solving the incompressible form of the Navier Stokes equations with surface 

tension in an Eulerian reference frame. The liquid-gas interfacial evolution is resolved using a volume- 

of-fluid (VOF) interface capturing method. The overall framework proceeds in four steps: 1) design of 

experiments study to identify the training and testing points and generation of corresponding datasets 

using DNS calculations; 2) dimensionality reduction using proper orthogonal decomposition; 3) Gaussian 

process regression (supervised training) over the reduced training dataset over the entire range of oper- 

ating conditions under consideration; and 4) Galerkin reconstruction and error quantification by compar- 

ing the emulated flowfields (at test conditions) with the testing dataset. The machine learning framework 

predicts both the spatial basis-functions and the time-coefficients, thus, predicting the entire flowfield in 

time and space. The capabilities of the algorithm are demonstrated for two canonical flow configurations: 

1) flow over a circular cylinder for a range of Reynolds numbers from 10 to 200; and 2) diesel jet injected 

into a quiescent nitrogen environment at chamber pressure of 30 atm and room temperature conditions, 

and injection velocities from 10 to 55 m/s, corresponding to a range of gas-based Weber numbers from 

11.5 to 348. The emulations from the learned GP algorithm show excellent agreement with high-fidelity 

numerical data for test conditions; average error (in both space and time) at the testing point of Re = 185 

for the flow over cylinder case is 4.4%, and for the diesel jet injection configuration at a testing point cor- 

responding to velovity of 22.5 m/s is found to be 15.5%. The tip penetration location of the diesel jet 

is predicted within 2.5% of the DNS calculations. Corresponding to these two representative test points, 

speedup of 256 and 80 0 0 is achieved for flow over cylinder and diesel jet atomization configurations, 

respectively. This paper represents the first effort of its kind on the development of a general machine 

learning framework to predict multiphase flows. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Numerical simulations play a major role in the development

f engineering devices and are increasingly becoming the primary

esign and analysis tool in liquid fueled propulsion devices, such

s diesel, gas-turbine and rocket engines, medical and other

nfrastructure based industries [1 , 2] . To this end, on one hand,

igh-fidelity computer modeling and simulation has resulted in

remendous progress in enhancing the quantitative understanding

f turbulent, multi-scale, multi-phase, and multi-physics processes
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nderlying various engineering systems [3] . On the other hand,

ecause of the wide range of length (sub-micron to meter scale)

nd time scales (100ns to 10s) involved in these processes [4 , 5] ,

uch high-fidelity simulations are cost-prohibitive and cannot be

eadily incorporated in the design and development of real-world

evices [6] . 

Specifically, for the liquid jet atomization process, significant

rogress has been made to enhance the mechanistic understanding

f flow dynamics, detailed spray physics and statistical behavior of

esulting droplets and velocity distributions using interface track-

ng and capturing techniques, such as level-set and volume-of-fluid

VOF) methods [7–10] . However, even with the use of adaptive-

esh-refinement (AMR) techniques, such simulations are subject

o severe grid resolution requirements at the liquid-gas interface
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that makes high-fidelity numerical studies computationally expen-

sive with large turn-around times, thus rendering them impractical

and prohibitive for routine design calculations. 

One way to incorporate high-fidelity physics from aforemen-

tioned simulations in design tools is by developing data driven sur-

rogate models that are cost-effective, and at the same time cap-

ture the detailed flow behaviors. There remains a major gap be-

tween data-driven techniques and high-fidelity calculations, espe-

cially in the context of multiphase flows. Currently existing data-

driven methods reported in fluid dynamics literature are limited

to the determination of system dynamics [11–13] ; the inclusion

of data-driven techniques to predict the complete flowfield with

high-fidelity is in its infancy. The current research effort is an at-

tempt to bridge the gap between high-fidelity simulations of single

and multiphase flows, and data-enabled surrogate modeling. This

emerging research opportunity, which is ubiquitous to many fields

that exhibit highly non-linear behaviors, is the focus of this paper. 

Previous effort s on analyzing flowfield data from experimental

and numerical simulations have been primarily focused on feature

extraction using Eigen value decomposition techniques to identify

underlying structure of nonlinear dynamics of single [14 , 15] and

multiphase flows [16–18] . Most commonly used data analysis and

identification techniques for non-reacting and reacting flows are

based on Karhunan-Loeve procedures such as the proper orthogo-

nal decomposition (POD) and dynamic mode decomposition tech-

niques [19–23] . A few attempts have also been made in the past to

develop machine learning based models to predict system dynam-

ics by combining modal decomposition with Gaussian process re-

gression [24 , 25] , artificial neural networks (ANN) [26 , 27] and deep

learning [28 , 29] . A notable application of such an approach for au-

tomotive design was recently presented by Moiz et al. [30] where

they used a machine learning (ML) based stochastic global opti-

mization genetic algorithm (GA) to optimize nine input parameters

to minimize fuel consumption while satisfying CO and NO x emis-

sion constraints. 75% reduction in turn-around time was reported

for this optimization problem with the ML-GA approach, as com-

pared to sequential CFD calculations with a GA optimizer. 

Recently, Brunton at al. [31] leveraged advances in sparsity and

machine learning techniques in combination with symbolic regres-

sion to predict flow over circular cylinders. They used the first two

most energetic POD modes and a shift mode as coordinate axes to

represent the steady state vortex shedding and transient dynamics,

respectively. The system dynamics in POD coordinates, quadratic

nonlinearity and time scales associated with the mean flow com-

pared well with reference data. A similar study was conducted

by Yeh et al. [32] using a kriging-based framework trained with

high-fidelity data to predict spatio-temporal behaviors of swirling

gas flow in an injector element and measured the accuracy of

the mean flow. Uncertainty quantification capabilities were also

demonstrated for different injector geometries. 

Grigo and Koutsourelakis [33] recently developed a Bayesian

formulation to simultaneously perform dimensionality reduction

for processes governed by partial differential equations. A Stochas-

tic Variational Inference (SVI) scheme was used to train the de-

veloped model. In addition to uncertainty propagation, the authors

suggested that their formulation can be used for the solution of in-

verse problems. In a follow up study, using the SVI scheme, Grigo

and Koutsourelakis [34] developed a probabilistic machine learning

framework and demonstrated prediction capabilities for unknown

extrapolative conditions. 

No study in the past has discussed a generalized machine learn-

ing framework that can predict the spatio-temporal behaviors of

multiphase flows. Therefore, in this research effort we develop

such a framework, based on Gaussian process based supervised

machine learning techniques.. One of the advantages of using the

Gaussian process machine learning algorithm is that it is based on
he Bayesian approach that maximizes the probability of predic-

ions and can be optimized to remove noise from the underlying

ignals. 

The overall framework proceeds in four steps: 1) design of ex-

eriment studies and generation of high-fidelity training and test-

ng datasets; 2) dimensionality reduction using proper orthogonal

ecomposition; 3) Gaussian process regression (supervised train-

ng) over the reduced training dataset for the range of operat-

ng conditions under consideration; and 4) Galerkin reconstruction

nd error quantification by comparing the emulated flowfields (at

est conditions) with the testing dataset (not used for training). To

emonstrate the robustness and applicability to single and multi-

hase flows, the framework is applied to two canonical configu-

ations: (1) flow over a circular cylinder; and (2) diesel jet injec-

ion in quiescent environment. This study is a step in the develop-

ent of a comprehensive surrogate modeling framework that can

e used as a routine design tool to investigate the entire process

rom liquid injection, atomization, vaporization, ignition and com-

ustion with high-fidelity. 

This paper is organized as follows – the emulation framework

s described in detail first. This is followed by the governing equa-

ions that are solved to establish the training and testing databases

sing direct numerical simulations. Mathematical description of

he POD technique and Gaussian process regression are discussed

ext. This is followed by the application of the developed frame-

ork to flow over a circular cylinder and diesel jet injection in

uiescent environment. 

. Emulation framework 

Fig. 1 shows the overall philosophy of the proposed framework.

here are four major steps, further details of which are provided in

ubsequent sub-sections: 

Step 1 : generation of training database using the truth model 

A design of experiment (DoE) study is conducted to identify the

ppropriate number and distribution of training points (in terms

f non-dimensional numbers such as Re, We, Oh), within the op-

rating range of interest. Direct numerical simulations are con-

ucted at the identified training conditions to generate a spatially

nd temporally varying training dataset. The machine learning al-

orithm is trained using this database. For clarity, the predictions

rom the trained machine learning algorithm will be referred to as

mulations and the results from direct numerical simulations will

e referred to as truth model for the rest of this paper. 

Step 2 : reduction of dimensionality 

Dimensionality reduction of the training data is achieved us-

ng proper orthogonal decomposition (POD) [35 , 36] . POD is a well-

nown principal component analysis technique that has been ex-

ensively used to extract system dynamics. The output of a POD

nalysis are Eigen modes (also called POD modes), spatial basis-

unctions and time-coefficients. 

Step 3 : Gaussian process regression 

The third step is kernel selection and Gaussian process regres-

ion – the inputs are Eigen modes, basis-functions and correspond-

ng time-coefficients generated in the previous step for the entire

raining database. After this step, for any given operating condi-

ion within the training bounds, the algorithm can predict the dy-

amics of the system, that is, the Eigen modes, basis-functions and

ime-coefficients. The spatio-temporal emulated flowfield is recon-

tructed by using Galerkin reconstruction [20] . 

Step 4 : error quantification 

Galerkin reconstruction is used to generate the spatio-temporal

owfield to emulate the flow behavior at all points within the

raining bounds. To establish the robustness and accuracy of the

ramework, L 1 error norm is calculated to quantify the difference

etween the emulated results and the corresponding truth model
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Fig. 1. Outline of Gaussian process-based machine learning algorithm as applied to a fluids problem; clockwise from above: Step 1 – design of experiments; Step 2 –

reduction of dimensionality; Step 3 – Gaussian process training and machine emulation; Step 4 – flowfield reconstruction and evaluation via error quantification. 
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t test points. The theoretical formulations of each of these steps

re discussed in the next five sub-sections. 

.1. Identification of training points 

High fidelity numerical simulations are often computationally

xpensive and conducting a parameter sweep for even a single

nput variable can be prohibitive. Under such circumstances, se-

ecting a set of equally spaced input variable points within the

raining bounds is sufficient for generating the training data as

ong as the set captures the salient features of the flow. In addi-

ion, prior knowledge of the physical processes based on the liter-

ture are also considered when choosing training points, such that

oints where significant phenomenological changes occur are in-

luded in the training dataset. In the current work, training points

re identified by a single variable – Reynolds number for flow over

 cylinder configuration and injection velocity (or Weber number)

or diesel jet injection case. Each truth-model-based simulation

an then be considered as independent and identically distributed

IID). This removes any bias and simplifies the Gaussian processes

equired for building the emulator. Similar to the study of McKay

t al. [37] , we use the worst-case scenario Latin Hypercube Sam-

ling (LHS) methodology for our DoE study [38 , 39] . LHS sampling

tates that if N intervals are needed for each component K , of an

nput variable X , then the total number of points required to cover

he sample space X is given as: 

amples = N 

K (1) 

The above equation does not specify the spacing between sam-

les; and hence as mentioned before, we sample points at regular

ntervals, corresponding to the worst case scenario. 
.2. Governing equations of the truth model 

The truth model is built on high-fidelity numerical simulations

ased on three-dimensional, incompressible, variable-density form 

f the Navier-Stokes equations with surface tension [40] . These

artial differential equations for mass and momentum conserva-

ion are: 

∂ρ

∂t 
+ ∇ . (ρ

−→ 

u ) = 0 (2) 

(
∂ 
−→ 

u 

∂t 
+ 

−→ 

u . ∇ 

−→ 

u 

)
= −∇ p + ∇ . (2 μD ) + σκδs � n (3)

here �
 u = u ( 

−→ 

x , t) is the fluid velocity, ρ = ρ( 
−→ 

x , t) the density,

= μ( 
−→ 

x , t) the dynamic viscosity, and D is the deformation ten-

or defined as D i j = 1 / 2(∂ u i /∂ x j + ∂ u j /∂ x i ) . σ is the surface ten-

ion coefficient, κ and 

�
 n are the radius of curvature and the unit

ector normal to the interface, respectively. The Dirac delta distri-

ution function, δs expresses the fact that the surface tension term

s concentrated on the interface. This methodology is also called

he one-fluid approach in the literature [41] . To capture the multi-

uid interface, a volume-of-fluid (VOF) variable c = c( 
−→ 

x , t) is intro-

uced. It is defined as the volume fraction of the fluid in a given

omputational cell. The density and viscosity in each finite volume

re then defined as linear functions of c : 

(c) = c ρ1 + (1 − c) ρ2 (4)

(c) = c μ1 + (1 − c) μ2 (5)

Subscripts 1 and 2 denote the first and second fluid, respec-

ively. Substituting Eqs. (4) and (5) in (2) transforms the advection

quation for the density to an equivalent equation for the volume
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Fig. 2. Schematic of flow over cylinder. 

Fig. 3. Comparison of Strouhal number from simulations with experimental mea- 

surements of [57] . 
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fraction, given by: 

∂c 

∂t 
+ ∇ . (c 

−→ 

u ) = 0 (6)

The theoretical formulation outlined above is solved numer-

ically using a finite volume method augmented by an adaptive

mesh refinement (AMR) technique to improve the solution ac-

curacy and efficiency. The framework is furnished with a multi-

block domain decomposition feature to facilitate parallel process-

ing on MPI-based distributed HPC environments. The details of the

numerical methodology can be referred to in the literature [42–

46,59,60] . 

2.3. Properorthogonal decomposition (POD) 

Proper orthogonal decomposition (POD) is a principle compo-

nent analysis technique and is widely used to identify system

dynamics [14 , 17 , 18 , 26 , 47] . POD yields an optimal set of basis-

functions from an input of ensemble data; the data source can

be numerical simulations or experiments. POD can be applied to

scalars as temperature, pressure, volume fractions, species concen-

trations, or to vectors such as velocity and vorticity. For flowfields,

velocity vector field, � u = u ( 
−→ 

x , t) is often used for POD analysis be-

cause its correlation matrix directly corresponds to the kinetic en-

ergy of system. The basic concept is to represent the velocity vec-

tor as a finite sum in a variable-separable form to approximate the

entire field, given by: 

u ( 
−→ 

x , t) = 

M ∑ 

i =1 

a i (t) φi ( 
−→ 

x ) (7)

where, u is the velocity vector field, 
−→ 

x is spatial coordinate and t is

temporal coordinate. M is the number of modes selected for sum-

mation. The vector field can be further modified by subtracting the

mean, such that only the unsteady components are retained in the

basis-functions. The mean value can be either spatial or temporal.
 v
q. (7) thus transforms to: 

 ( 
−→ 

x , t) − ū ( 
−→ 

x , t) = 

M ∑ 

i =1 

a i (t) φi ( 
−→ 

x ) (8)

A covariance matrix is obtained by multiplying this vector with

ts transpose, resulting in a square matrix as follows: 

�
  corr = 

�
 u ∗ �

 u 

T (9)

Eigenvalue decomposition based on the method proposed by

irovich [36] , also called the method of snapshots, is then per-

ormed on this correlation matrix. The eigenvalues and eigenvec-

ors obtained by this analysis and are orthonormal to each other.

o determine the number of modes, r needed to reconstruct flow

ata, eigenvalues are identified such that they capture 99% of the

otal energy. The flowfield can then be reconstructed using r modes

sing corresponding basis-functions and time-coefficients, as fol-

ows: 

 ( 
−→ 

x , t) − ū ( 
−→ 

x , t) = 

r ∑ 

i =1 

a i (t) φi ( 
−→ 

x ) (10)

.4. Gaussian process regression for fluid flows 

.4.1. Gaussian process regression 

Gaussian process regression (GPR) is a non-parameterized

ayesian analysis method that can be used as a supervised ma-

hine learning tool to build surrogate models from experimental,

imulation or probabilistic-distribution datasets. The underlying as-

umption and idea behind GPR is that the mean and covariance

f a dataset, which can be represented as a sample from a Gaus-

ian distribution, if modelled by assuming a mean (assumed to be

 in this paper) and covariance function, k ( x, x’ ), can be used to

stimate outputs and their probabilities for desired inputs. As re-

orted in subsequent sections, this hypothesis is validated via two

ase studies concerning gaseous and multiphase flows. It should

e noted that the goal of GPR is not to find a functional form

hat maps inputs to output but to predict the output and asso-

iated uncertainties (at inputs where output is not known) based

n n observations. The covariance function is then calculated over

ll possible combinations in the dataset, given by three matrices

4 8 , 4 9] : 

K = 

⎡ 

⎢ ⎢ ⎣ 

k ( x 1 , x 1 ) k ( x 1 , x 2 ) . . . k ( x 1 , x n ) 
k ( x 2 , x 1 ) k ( x 2 , x 2 ) . . . k ( x 2 , x n ) 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

k ( x n , x 1 ) k ( x n , x 2 ) . . . k ( x n , x n ) 

⎤ 

⎥ ⎥ ⎦ 

 ∗ = 

[
k ( x ∗, x 1 ) k ( x ∗, x 2 ) . . . k ( x ∗, x n ) 

]
and K ∗∗ = k ( x ∗, x ∗) 

(11)

here x ∗ is the point where we are trying to estimate the likeli-

ood of the solution, y ∗ given the training dataset, represented by

 Gaussian distribution: 

y 
y ∗

]
∼ N 

(
0 , 

[
K K 

T 
∗

K ∗ K ∗∗

])
(12)

here T indicates transpose. We are interested in the conditional

robability p ( y ∗ | y ), that is, given the training data, what is the

robability (and predicted value) of y ∗ at x ∗ .This probability turns

ut to be a Gaussian distribution given by [48] : 

 ∗| y ∼ N 

(
K ∗K 

−1 y , K ∗∗ − K ∗K 

−1 K 

T 
∗
)

(13)

The mean and variance of this distribution then represents y ∗
nd the associated uncertainty, respectively, as shown below: 

¯
 ∗ = K ∗K 

−1 y 

ar ( y ∗) = K ∗∗ − K ∗K 

−1 K 

T 
∗

(14)
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Fig. 4. Instantaneous snapshot of flow over a cylinder for Re = 180. Window of interest for capturing flow features, as compared to the flow domain. 

Fig. 5. Comparison of (a) Eigen values for Re = 185; (b) GP model for first Eigen mode, λ0 . 

Fig. 6. Comparison of emulated and truth model for test point of Re = 185: POD modes and reconstructed flowfield. L 1 error contours (between the truth model and 

emulation) are shown in bottom right. 
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The preceding discussion relies on how the covariance matri-

ces are formed. One way, is to calculate it pairwise for all points,

which can easily become very expensive. Another way, which is

followed in this paper, is to use a function, k ( x, x’ ) also known as

kernel to build the covariance matrices. The parameters associated

with the kernel are often called hyperparameters, denoted by θ .

The reliability of predictions through GPR is therefore, dependent

on the choice of kernels and the corresponding prior estimates of

the hyperparameters. In the current research effort, a unif orm dis-

tribution of priors is used based on the conclusions of Chen and

Wang [50] , where they showed that for a given kernel, the choice

of initial hyperparameters have no significant impact on GPR pre-

dictions. The optimum value of θ that fits the training dataset (as-

suming that little to no information is known about θ ) then occurs

when p ( θ | x, y ) is largest, which from Bayes’ theorem corresponds

to maximizing log p ( y | x , θ ) and is given by: 

log p(y | x , θ ) = −1 

2 

y T K 

−1 y − 1 

2 

log | K| − n 

2 

log 2 π (15)

Once the hyperparameters are calculated, the predictions for

y ∗ corresponding to x ∗ can be obtained from Eq. (14) . In essence,

GPR is non-parametric in the sense that a functional form is not

assumed for the data, but for the covariance function. There are

other methods that are completely non-parametric and can be re-

ferred to elsewhere [51] . The GPR training algorithm in the paper

follows the implementation of Gaussian Process Summer School

[52 , 53] . 

2.4.2. General considerations and kernel selection for fluid flows 

For supervised learning of fluid flows, kernel selection depends

on the behaviour of data for the model to perform reliably within

the bounds of the input variables of the training dataset. The goal

of the current research effort is to predict the spatio-temporal dy-

namics of single and multiphase flows for operating conditions

that lie within the GPR training range. To achieve this objective,

GPR is applied at each point (defined by the numerical grid) in the

flowfield for the following data types obtained after the POD anal-

ysis: 1) Eigen values, 2) mean parameter values, 3) modal basis-

function values and 4) time-coefficients. The challenge is to iden-

tify a kernel function that simultaneously satisfies the aforemen-

tioned four data types at each grid point. The following were con-

sidered prior to selecting a kernel for emulating fluid flows: 

1 As the data used for training the machine learning algorithm is

obtained from direct numerical simulations is deterministic the

GP model has to pass through the training data points. 

2 Based on DoE, an optimum set of training points is identified.

The distribution of these points is determined by the physics

under consideration - training points where significant phe-

nomenological changes are observed are selected. 
Fig. 7. Comparison of velocity profiles in vertical ( x = -0.1, 0.1, 0.2, 0.4) and horizontal ( y

the test point of Re = 185. 
3 The model behaviour should not change when additional train-

ing data points are added within the training bounds. The

model however, should change when data points are removed

from this set. For both case studies described in this paper, no

changes were observed in the predicted flowfields when addi-

tional datasets were added. This check ensures reliability of the

model. 

4 Kernel functions were selected based on characteristics of the

four data types at a few locations in the flowfield, for the en-

tire input parameter space. Since it is not possible to observe

the behaviors at all locations, representative locations like the

wake for the cylinder flow or the liquid-gas interface were cho-

sen for selecting the kernel function. The kernel function for

each data type is kept constant in the current effort over the

entire flowfield. 

5 The rationale underlying the selection of a kernel function is

to capture as much variation in the signal as possible across all

training datasets at each point in space and time. There are sev-

eral strategies to accomplish this: (1) selecting spatial locations

where the flow behaviors are most dynamic, such as recircu-

lation zones immediately downstream of the cylinder wake in

case of flow over cylinder case, and the recirculating zones ap-

pearing behind the ligaments formed due to primary atomiza-

tion. Based on the specific flow behaviors, other dynamic fea-

tures can be used to identify the appropriate spatial locations.

To ensure that one kernel depicts the entire flowfield in space

and time, we use the additive, multiplicative and convolution

properties, which preserve the positive definiteness of the ker-

nels; (2) dividing the domain in zones (based on a predefined

criteria) and creating individual kernels for each of them. In this

study we used the first method, where there is only one kernel

for the entire domain. 

Details pertaining to kernel functions specific to each case study

s accompanied with their descriptions below. 

.5. Error quantification and speedup 

All errors reported in this study are based on the L 1 norm, de-

ned as follows: 

r ror = 

1 

n 

n ∑ 

i 

( | tr uth − emulation | 
tr uth 

)
i 

(16)

The speedup factor is estimated as shown below: 

peedup = 

(
t truth 

t emul ation 

)
(17)

. Case studies 

To verify the numerical treatment and to establish confidence,

he framework described in the previous sections is applied to two
 = -0.2, -0.1, 0.1, 0.2) directions between the truth model and emulated results for 
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Fig. 7. Continued 
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s  
ifferent sam ple problems. These include 2 canonical laminar flow

onfigurations: (1) air flow over a circular cylinder; and (2) liq-

id jet injection in quiescent environment. Four steps described in

ig. 1 are applied to both flow situations. 
.1. Flow over a circular cylinder 

Laminar flow of air over a 2D circular cylinder is studied first as

chematically shown in Fig. 2 . The computational domain encom-
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Table 1 

Operating conditions and relevant non- 

dimensional numbers for flow over a cylinder. 

Diameter 0.125 m 

Viscosity 1.84 × 10 −5 Pa-s 

Density 1.225 kg/m 

3 

Operating pressure 1 atm 

Operating temperature 298 K 

Reynolds number 10 to 200 
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passes a region of 8.00 m × 1.00 m. Air flows through the channel

that contains a cylinder of diameter 0.125 m, with a bulk speed, U

ranging from 0.121 to 2.414 cm/s, at atmospheric conditions (p = 1

atm and T = 298 K). The corresponding Reynolds numbers based

on the cylinder diameter varies from 10 to 200. The cylinder is

located at a distance of 0.5 m, downstream of the entrance. The

grid adapts based on the vorticity gradient after every timestep to

capture the unsteady wake and the periodic vortex shedding [54–

56] . Fig. 2 shows the schematic of the configuration and the corre-

sponding operating conditions are listed in Table 1 . 

Step 1. training dataset 

The flow conditions are consolidated in one input variable – the

Reynolds number. Since the system behavior is not known apriori,

uniform spacing is chosen based on LHS worst case scenario ap-

proach, such that the training points consist of results from high-

fidelity spatio-temporally varying flowfields at 20 equally spaced

intervals in the Reynolds number space, i.e., 10, 20, 30, …, 200. In

addition to the training database, a testing database is also estab-

lished represented by Re = 15, 25, 35, …, 195. To ensure accuracy

of the high-fidelity calculations that will become the basis of Gaus-

sian process training, Strouhal numbers (non-dimensional vortex

shedding frequency) obtained from the current study at different

Reynolds numbers are compared with measurements of Lienhard

[57] . As shown in Fig. 3 , our results corroborate very well with

published literature. 

Step 2. dimensionality reduction 

Fig. 4 shows an instantaneous snapshot of flow over a cylin-

der for Re = 180. Each grid point in the flowfield is associated

with discrete values of primitive and derived variables, including

the velocity vector, pressure and vorticity. For demonstration pur-

poses, GPR is performed in the near field of the cylinder, shown

by the box with dimensions of 0.75 × 0.50 m 

2 in Fig. 4 that con-

sists of 150 0 0uniformly spaced points that capture the critical flow

features like the wake and vortex shedding immediately down-

stream of the cylinder. These points are kept consistent for the en-

tire training dataset described in step 1. 

To identify system dynamics and reduce the dimensionality,

POD analysis is performed on the spatio-temporally varying high-

fidelity results over the entire range of training Reynolds numbers.

The result of this analysis are the Eigen values, basis-functions and
ime-coefficients. As shown in Fig. 5 a, the first 16 modes (out of a

otal of 101) retain 99%, and the first mode captures 40%%of the en-

rgy content. These modes and corresponding basis-functions and

ime-coefficients are used for GPR. 

Step 3. Gaussian process training 

As described before, the GP training algorithm has to be applied

or four different data types, and an appropriate kernel function

as to be chosen based on their behaviours. Kernel function used

or emulating Eigen values has the following mathematical form:

ernel = (rational quadriatic + spline + brownian) (18)

 

(
x, x ′ 

)
= 

( 

1 + 

(
x − x ′ 

)2 

2 αl 2 

) −α

+ 

(
ξ + xx ′ + 


(
1 

2 
| x − x ′ | min 

(
x, x ′ 

)
+ 

1 

3 
min 

(
x, x ′ 

)3 
))

+ 

(
min 

(
x, x ′ 

))
(19)

here α, ξ and l are kernel hyper-parameters. The training values

re normalized before the emulation is conducted to reduce model

omplexity and stiffness. As shown in Fig. 5 a, the emulated Eigen

alues for testing condition of Re = 185 agrees very well with re-

ults from the truth model. The error between the truth model and

mulated Eigen modes that contain 99% of the kinetic energy con-

ent for this testing point of Re = 185 (not used for training) is

.87%. Fig. 5 b shows the mean and the corresponding confidence

nterval when using the above kernel for the prediction of the

igen mode-0 ( λ0 ). This model has a 95% confidence within the

ounds of the training range. However, outside that range, uncer-

ainties are high, as a result we recommend the use of this model

nly within the bounds of the training range. Similar emulation

odels exist for all the other Eigen modes. 

Similar to Eigen values, kernel functions are established for the

patial basis-functions and time-coefficients, such that they accu-

ately predict the training data. The expectation is that if train-

ng data is predicted with sufficient confidence, any testing point

ithin the range will be predicted with low uncertainty. Kernel

unctions developed for spatial basis-functions and time coeffi-

ients are given by: 

ernel = ( Polynomial ( 1 + Brownian ) 

+ Spline ( 1 + Periodic exponential + Brownian ) ) (20)

 

(
x, x ′ 

)
= 

(
α2 x T x + β2 

)
∗
(
1 + 

(
min 

(
x, x ′ 

)))
+ 

(
ξ + xx ′ + 


(
1 

2 
| x − x ′ | min 

(
x, x ′ 

)
+ 

1 

3 
min 

(
x, x ′ 

)3 
))

∗( 

1 + 

( 

exp 

( 

−
2 sin 

2 
(

x −x ′ 
2 

)
l 2 

) ) 

+ 

(
min 

(
x, x ′ 

))) 

(21)

ernel = ( Polynomial + Spline ( 1 + Brownian ) ) (22)

 

(
x, x ′ 

)
= 

(
α2 x T x + β2 

)
+ 

(
ξ + xx ′ + 


(
1 

2 

| x − x ′ | min 

(
x, x ′ 

)
+ 

1 

3 

min 

(
x, x ′ 

)3 
))

∗
(
1 + 

(
min 

(
x, x ′ 

)))
(23)

here α, β , and ξ are the kernel hyper-parameters. To ensure that

he emulated results are not dependent on the number of train-

ng points, training points were sequentially added until the em-

lated predictions were invariant. The GP-based machine learning

lgorithm described above is then trained with the POD modes,

asis-function values and time-coefficients of the training dataset.
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contours (between the truth model and emulation) are shown in bottom right. 
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nce the training dataset is learned, measured by how well train-

ng data is predicted, the algorithm is used to predict the flowfield

t testing conditions. 

Step 4.error quantification and speedup 

The spatio-temporal flowfield is reconstructed using Galerkin

econstruction of POD modes, basis-functions and time-coefficients

roposed by Newman [20] . Fig. 6 shows a comparison between the
mulated basis-functions corresponding to modes 0, 1, 5, 10 and

5 and the reconstructed flowfield with simulations conducted us-

ng the truth model. von Karman vortex street, Föppl vortices and

ssociated flow features are retained in the emulation, validating

ur framework. As expected, minor loss of information is observed

nd is quantified by the L 1 error between the truth model and the

mulated flowfield for velocity magnitudes. For Re = 185, the er-



10 H. Ganti and P. Khare / Computers and Fluids 210 (2020) 104626 

Fig. 11. Comparison of truth model vs emulation predictions for training point, U j = 22.5 m/s. From top to bottom: Modes 0, 1, 10, 20, 30 and reconstructed flowfield. L 1 
error contours (between the truth model and emulation) are shown in bottom right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Diesel fuel properties, operating conditions and corre- 

sponding non-dimensional numbers. 

(a) Liquid – Diesel 

Jet diameter D 100 μm 

Density ρ l 840 kg/m 

3 

Viscosity μl 2.87e-3 Pa-s 

Surface tension σ l 2.95e-2 N/m 

Jet velocity U j 10 to 55 m/s 

(b) Gas – Nitrogen 

Density ρg 34.5 kg/m 

3 

Viscosity μg 1.97e-5 Pa-s 

Pressure p 30.1 atm 

Temperature T 300 K 

(c) Non-Dimensional Numbers 

Density ratio ρ l / ρg 24.58 

Reynolds number ρ l U j D/ μl 295 to 1675 

Weber number ρg U j 
2 D / σ l 11.5 to 348 

p  

s  

t

 

v  

i  

i  
ror is 4.40% and the speedup achieved is 256. To further demon-

strate the accuracy of our framework, Fig. 7 shows the comparison

of velocity profiles in the horizontal and vertical directions at four

different sections for the test point, Re = 185. As can be observed

from the figure, there is an excellent agreement between the truth

model and emulated results. 

3.2. Liquid injection in quiescent environment 

Next, the framework is applied to 2-D diesel jet injection in

quiescent N 2 environment. Table 2 lists the fuel properties, oper-

ating conditions and the corresponding range of the relevant non-

dimensional numbers. All simulations are conducted at a chamber

pressure of 30.1 atm and room temperature conditions. The injec-

tion velocities are varied from 10 to 55 m/s, corresponding to We-

ber numbers ranging from 11.5 to 348. The grid adapts based on

the value and gradient of the VOF variable to refine the interior of

the liquid field and the gas-liquid interface, respectively. Prior to

applying the Gaussian process based framework, 3-D simulations

of diesel injection in stagnant ambient at p = 30 atm and T = 300

K, and inlet fluctuations with amplitude of 5% of injection velocity

in the frequency range of 0-100 Hz are conducted and compared

with published literature [58] to establish confidence in the truth

model. 

Fig. 8 shows the comparison of unperturbed jet lengths as a

function of fluctuation frequency from current simulations as com-
ared to published data by Yang and Turan [58] for We = 287.5,

howing excellent agreement, including the jump in the unper-

urbed length at 40 Hz. 

Step 1. training dataset 

The training points consist of results from 2D spatio-temporally

arying spray fields at 10 equally spaced points in injection veloc-

ty parameter space, given by: 10, 15, 20, …, 55. A testing database

s also established represented by injection velocities of 12.5, 17.5,
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Fig. 12. Time evolution of liquid jet injection and atomization for U j = 22.5; comparison between truth model and emulation. Non-dimensional time, t ∗ = t/( U j / D 0 ). L 1 error 

contours (between the truth model and emulation) are shown on the right at each time. 

Fig. 13. Comparison of spray tip location between predicted by emulations and 

truth model at various non-dimensional times. 
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2.5, …, 52.5. To ensure that results of emulation are independent

f the number of training points, datasets are added progressively

ntil the emulation results are invariant; this resulted in the cho-

en training dataset mentioned above. 

Step 2. dimensionality reduction 

Similar to the cylinder flow simulation, a windowing function

ith 120 0 0 0 discrete and uniformly spaced grid points was used

o capture data in a region of interest inside the flow domain.

hese set of points are kept consistent for the training dataset de-

cribed in step 1. Dimensionality reduction is performed with POD

n the simulation data to extract the dominant energetic modes

ontaining 95% of flow energy. The training data was normalized

o reduce stiffness before performing POD that resulted in a set

f mean values. The GP algorithm is then run on four different
ata value types - POD modes, mean and basis-function values,

nd time-coefficients. As shown in Fig. 8 a, for the testing point

f U j = 22.5 m/s, the first 37 (out of 101) modes retain the re-

uired 95% of energy content, with mode 0 capturing 26.4% of it.

he other injection velocities show similar results. 

Step 3. Gaussian process training 

The kernel functions used for flow over a cylinder emulated the

ata for liquid jet atomization process well without modifications,

herefore, only machine learning emulation results are discussed in

he rest of this section. Fig. 9 a show the comparison of the first 10

mulated POD modes with the truth model for the testing point

dentified by U j = 22.5 m/s; excellent agreement is achieved. The

rror between the emulated Eigen modes (that contains 95% of the

otal energy) and the truth model for the test point, U j = 22.5 m/s

s 9.49%. Fig. 9 b shows the prediction of the largest energy con-

aining mode, λ0 for the entire range of injection velocities from

0 to 55 m/s using the machine learning algorithm. The prediction

or the training as well as testing datasets is within 2 σ confidence

nterval, and as expected, the uncertainty increases for conditions

hat are out of bounds of the training conditions. 

Before predicting the spatio-temporally varying flowfield for the

est conditions using the trained machine learning algorithm, its

ccuracy and consistency is confirmed by predicting the basis-

unctions and time-coefficients of the training dataset. As demon-

trated in Fig. 10 a-f, which shows excellent agreement is achieved

etween the basis-function values from POD (of the truth model,

hown on the left) and GPML (on the right) for modes 0, 1, 10,

0, 30 for a training point corresponding to U j = 45 m/s. The re-

onstructed spray field, shown in Fig. 10 f also compares very well

ith the truth model. The algorithm is then used to predict the
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modes and spray field for test condition of U j = 22.5 m/s, shown

in Fig. 11 . 

Fig. 12 shows the time evolution of spray field for the test point

corresponding to U j = 22.5. Emulation results are in the middle,

the L 1 error contours on the right and the the truth model on

the left. The reconstructed flowfields compare well with the truth

model and capture ligamentation, droplet formation and shedding

accurately. The average L 1 error between the truth model and em-

ulation for the VOF variable at an injection velocity of 22.5 m/s is

15.76%. The corresponding speedup is estimated to be 80 0 0, with

the truth model taking 33 hours and 20 minutes on 32 compute

cores to simulate the spatio-temporal evolution of diesel injection

and atomization process and emulation taking 8 min on a single

core. 

The L 1 error for this configuration is considerably higher than

the cylinder case. This is primarily due to the fact that during the

POD analysis only 95% of the energy is captured for this case as

opposed to 99% for the cylinder case. Capturing 99% of the energy

for the liquid jet injection case, requires 89 of the 101 modes that

would have led to significantly higher training costs thus reducing

the speedup. That said, the framework can easily produce more ac-

curate results at the expense of speedup. 

Spray tip locations predicted by the GP based surrogate model

are also extracted. Fig. 13 shows the comparison of the time evolu-

tion of the spray tip for 5 different non-dimensional times for the

test point corresponding to diesel injection velocity of 22.5 m/s,

showing excellent agreement with the truth model. The average

error for the 5 times between the truth model and emulation re-

sults is 2.40%. 

4. Conclusions 

A data-driven surrogate modeling framework was developed to

emulate spatio-temporal gaseous and spray fields using Gaussian

process-based machine learning techniques. The developed frame-

work is applied to two canonical configurations of flow over a cir-

cular cylinder and diesel jet injection in quiescent ambient. The GP

algorithm was trained using data generated by solving the incom-

pressible form of the Navier-Stokes equations with surface tension

(for the diesel injection case). To identify system dynamics and re-

duce the dimensionality of the training dataset, POD was applied

as the first step. Next, based on the flow behaviors, kernel func-

tions that are positive, definite and stationary are selected. Once

trained the predictions have a 2 σ confidence interval and accept-

able L 1 error norm, especially considering the enormous speedup

(80 0 0 for the diesel injection case) achieved as a result of us-

ing the GP based surrogate model. A mathematical formalism of

selecting kernel functions is yet to be developed, however, we

used only one set of kernel functions for both the case studies.

It is hoped that this is a good first step in making it possible to

conduct previously unaffordable and prohibitive sensitivity analy-

sis and uncertainty quantification studies for routine design cal-

culations of single and multiphase flow dynamics of engineering

devices. 
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